# EXTENDED MATHEMATICS 2002-2011 <br> CLASSIFIEDS ALGEBRA 

Compiled \& Edited By

Dr. Eltayeb Abdul Rhman

www.drtayeb.wordpress.com

## First Edition 2011

11 Factorise completely.

$$
p^{2} x-4 q^{2} x
$$

16 The time, $t$, for a pendulum to swing varies directly as the square root of its length, $l$. When $l=9, t=6$.
(a) Find a formula for $t$ in terms of $l$.

$$
\text { Answer(a) } t=
$$

(b) Find $t$ when $l=2.25$.

## Answer(b) $t=$

14 (a) Write down the value of $x^{-1}, x^{0}, x^{\frac{1}{2}}$, and $x^{2}$ when $x=\frac{1}{4}$.

$$
\begin{align*}
& \text { Answer (a) } x^{-1} \\
& x^{0}= \\
& x^{\frac{1}{2}}= \\
& x^{2}= \tag{2}
\end{align*}
$$

(b) Write $y^{-1}, y^{0}, y^{2}$ and $y^{3}$ in increasing order of size when $y<-1$.

Answer (b) $\qquad$ .. $<$ $\qquad$ . $\qquad$ .

18 Write as a single fraction, in its simplest form.

$$
\frac{1-x}{x}-\frac{2+x}{1-2 x}
$$

Answer

19


NOT TO
SCALE

The diagram shows a sector $A O B$ of a circle, centre $O$, radius 9 cm with angle $A O B=50^{\circ}$.
Calculate the area of the segment shaded in the diagram.

2 (a) Find the integer values for $x$ which satisfy the inequality

$$
-3<2 x-1 \leqslant 6 .
$$

(b) Simplify $\frac{x^{2}+3 x-10}{x^{2}-25}$.

## Answer(b)

(c) (i) Show that $\frac{5}{x-3}+\frac{2}{x+1}=3$ can be simplified to $3 x^{2}-13 x-8=0$.

Answer(c)(i)
(ii) Solve the equation $3 x^{2}-13 x-8=0$.

Show all your working and give your answers correct to two decimal places.

1 Children go to camp on holiday.
(a) Fatima buys bananas and apples for the camp.
(i) Bananas cost $\$ 0.85$ per kilogram.

Fatima buys 20 kg of bananas and receives a discount of $14 \%$.

How much does she spend on bananas?

> Answer(a)(i) \$
(ii) Fatima spends $\$ 16.40$ on apples after a discount of $18 \%$.

Calculate the original price of the apples.

Answer(a)(ii) \$
(iii) The ratio number of bananas: number of apples $=4: 5$.

There are 108 bananas.
Calculate the number of apples.

## Answer(a)(iii)

[2]
(b) The cost to hire a tent consists of two parts.


The total cost for 4 days is $\$ 27.10$ and for 7 days is $\$ 34.30$.
Write down two equations in $c$ and $d$ and solve them.

$$
\begin{array}{r}
\operatorname{Answer}(b) c= \\
d=
\end{array}
$$

(c) The children travel 270 km to the camp, leaving at 0743 and arriving at 1513 .

Calculate their average speed in $\mathrm{km} / \mathrm{h}$.

Answer(c)
km/h
[3]
(d) Two years ago $\$ 540$ was put in a savings account to pay for the holiday.

The account paid compound interest at a rate of $6 \%$ per year.
How much is in the account now?


An equilateral 16 -sided figure $A P A^{\prime} Q B \ldots \ldots$ is formed when the square $A B C D$ is rotated $45^{\circ}$ clockwise about its centre to position $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
$A B=12 \mathrm{~cm}$ and $A P=x \mathrm{~cm}$.
(a) (i) Use triangle $P A^{\prime} Q$ to explain why $2 x^{2}=(12-2 x)^{2}$.
(ii) Show that this simplifies to $x^{2}-24 x+72=0$.
(iii) Solve $x^{2}-24 x+72=0$. Give your answers correct to 2 decimal places.
(b) (i) Calculate the perimeter of the 16 -sided figure.
(ii) Calculate the area of the 16 -sided figure.


A rectangular-based open box has external dimensions of $2 x \mathrm{~cm},(x+4) \mathrm{cm}$ and $(x+1) \mathrm{cm}$.
(a) (i) Write down the volume of a cuboid with these dimensions.
(ii) Expand and simplify your answer.
(b) The box is made from wood 1 cm thick.
(i) Write down the internal dimensions of the box in terms of $x$.
(ii) Find the volume of the inside of the box and show that the volume of the wood is $8 x^{2}+12 x$ cubic centimetres.
(c) The volume of the wood is $1980 \mathrm{~cm}^{3}$.
(i) Show that $2 x^{2}+3 x-495=0$ and solve this equation.
(ii) Write down the external dimensions of the box.

5 Maria walks 10 kilometres to a waterfall at an average speed of $x$ kilometres per hour.
(a) Write down, in terms of $x$, the time taken in hours.
(b) Maria returns from the waterfall but this time she walks the 10 kilometres at an average speed of $(x+1)$ kilometres per hour. The time of the return journey is 30 minutes less than the time of the first journey.
Write down an equation in $x$ and show that it simplifies to $x^{2}+x-20=0$.
(c) Solve the equation $x^{2}+x-20=0$.
(d) Find the time Maria takes to walk to the waterfall.

7 To raise money for charity, Jalaj walks 22 km , correct to the nearest kilometre, every day for 5 days.
(a) Complete the statement in the answer space for the distance, $d \mathrm{~km}$, he walks in one day.

$$
\text { Answer (a) ..................... } \leqslant d<
$$

(b) He raises $\$ 1.60$ for every kilometre that he walks.

Calculate the least amount of money that he raises at the end of the 5 days.

Answer (b) \$

8 Solve the simultaneous equations

$$
\begin{aligned}
& \frac{1}{2} x+2 y=16 \\
& 2 x+\frac{1}{2} y=19 .
\end{aligned}
$$

```
Answer x =
    y=.
```

9 The wavelength, $w$, of a radio signal is inversely proportional to its frequency, $f$. When $f=200, w=1500$.
(a) Find an equation connecting $f$ and $w$.

> Answer (a)
(b) Find the value of $f$ when $w=600$.

$$
\text { Answer (b) } f=
$$

13 Solve the equation

$$
\frac{x-2}{4}=\frac{2 x+5}{3}
$$

$$
\text { Answer } x=
$$

14 A company makes two models of television.
Model $A$ has a rectangular screen that measures 44 cm by 32 cm .
Model $B$ has a larger screen with these measurements increased in the ratio 5:4.
(a) Work out the measurements of the larger screen.

Answer(a) $\qquad$ cm by $\qquad$ cm [2]
(b) Find the fraction $\frac{\operatorname{model} A \text { screen area }}{\operatorname{model} B \text { screen area }}$ in its simplest form.

> Answer(b)

15 Angharad had an operation costing $\$ 500$.
She was in hospital for $x$ days.
The cost of nursing care was $\$ 170$ for each day she was in hospital.
(a) Write down, in terms of $x$, an expression for the total cost of her operation and nursing care.

$$
\text { Answer }(a) \$
$$

(b) The total cost of her operation and nursing care was $\$ 2370$.

Work out how many days Angharad was in hospital.

5 The length, $y$, of a solid is inversely proportional to the square of its height, $x$.
(a) Write down a general equation for $x$ and $y$.

Show that when $x=5$ and $y=4.8$ the equation becomes $x^{2} y=120$.
(b) Find $y$ when $x=2$.
(c) Find $x$ when $y=10$.
(d) Find $x$ when $y=x$.
(e) Describe exactly what happens to $y$ when $x$ is doubled.
(f) Describe exactly what happens to $x$ when $y$ is decreased by $36 \%$.
(g) Make $x$ the subject of the formula $x^{2} y=120$.
(b)


The diagram shows a right-angled triangle.
The lengths of the sides are given in terms of $y$.
(i) Show that $2 y^{2}-8 y-3=0$.
(ii) Solve the equation $2 y^{2}-8 y-3=0$, giving your answers to 2 decimal places.
(iii) Calculate the area of the triangle.
(b)


NOT TO
SCALE

In the diagram $P Q$ is parallel to $R S$.
$P S$ and $Q R$ intersect at $X$.
$P X=y \mathrm{~cm}, Q X=(y+2) \mathrm{cm}, R X=(2 y-1) \mathrm{cm}$ and $S X=(y+1) \mathrm{cm}$.
(i) Show that $y^{2}-4 y-2=0$.
(ii) Solve the equation $y^{2}-4 y-2=0$.

Show all your working and give your answers correct to two decimal places.
(iii) Write down the length of $R X$.

8 A packet of sweets contains chocolates and toffees.
(a) There are $x$ chocolates which have a total mass of 105 grams.

Write down, in terms of $x$, the mean mass of a chocolate.
(b) There are $x+4$ toffees which have a total mass of 105 grams.

Write down, in terms of $x$, the mean mass of a toffee.
(c) The difference between the two mean masses in parts (a) and (b) is 0.8 grams.

Write down an equation in $x$ and show that it simplifies to $x^{2}+4 x-525=0$.
(d) (i) Factorise $x^{2}+4 x-525$.
(ii) Write down the solutions of $x^{2}+4 x-525=0$.
(e) Write down the total number of sweets in the packet.
(f) Find the mean mass of a sweet in the packet.
$m^{4}-16 n^{4}$ can be written as $\left(m^{2}-k n^{2}\right)\left(m^{2}+k n^{2}\right)$. $k$.

Factorise completely $m^{4} n-16 n^{5}$.

6 (a)


In triangle $A B C$, the line $B D$ is perpendicular to $A C$.
$A D=(x+6) \mathrm{cm}, D C=(x+2) \mathrm{cm}$ and the height $B D=(x+1) \mathrm{cm}$.
The area of triangle $A B C$ is $40 \mathrm{~cm}^{2}$.
(i) Show that $x^{2}+5 x-36=0$.

Answer (a)(i)
(ii) Solve the equation $x^{2}+5 x-36=0$.

$$
\begin{equation*}
\text { Answer(a)(ii) } x= \tag{2}
\end{equation*}
$$

$\qquad$ or $x=$
(iii) Calculate the length of $B C$.
(b) Amira takes 9 hours 25 minutes to complete a long walk.
(i) Show that the time of 9 hours 25 minutes can be written as $\frac{113}{12}$ hours.

Answer (b)(i)
(ii) She walks $(3 y+2)$ kilometres at $3 \mathrm{~km} / \mathrm{h}$ and then a further $(y+4)$ kilometres at $2 \mathrm{~km} / \mathrm{h}$. Show that the total time taken is $\frac{9 y+16}{6}$ hours.
Answer(b)(ii)
(iii) Solve the equation $\frac{9 y+16}{6}=\frac{113}{12}$.

$$
\operatorname{Answer(b)(iii)~} y=
$$

(iv) Calculate Amira's average speed, in kilometres per hour, for the whole walk.


NOT TO
SCALE

A solid metal bar is in the shape of a cuboid of length of 250 cm .
The cross-section is a square of side $x \mathrm{~cm}$.
The volume of the cuboid is $4840 \mathrm{~cm}^{3}$.
(a) Show that $x=4.4$.

Answer (a)
(b) The mass of $1 \mathrm{~cm}^{3}$ of the metal is 8.8 grams.

Calculate the mass of the whole metal bar in kilograms.
kg [2]
(c) A box, in the shape of a cuboid measures 250 cm by 88 cm by $h \mathrm{~cm}$. 120 of the metal bars fit exactly in the box.
Calculate the value of $h$.

$$
\text { Answer(c) } h=
$$

11 Make $d$ the subject of the formula $c=\frac{5 d+4 w}{2 w}$.

$$
\text { Answer } d=
$$

$12 Q=\{2,4,6,8,10\}$ and $R=\{5,10,15,20\}$. $15 \in P, \mathrm{n}(P)=1$ and $P \cap Q=\emptyset$.

Label each set and complete the Venn diagram to show this information.


13 Solve the simultaneous equations.

$$
\begin{aligned}
& \frac{2 x+y}{2}=7 \\
& \frac{2 x-y}{2}=17
\end{aligned}
$$

Answer $x=$

$$
y=
$$

9 (a) Solve the following equations.
(i) $\frac{5}{w}=\frac{3}{w+1}$

$$
\operatorname{Answer(a)(i)~w=~}
$$

(ii) $(y+1)^{2}=4$

$$
\text { Answer(a)(ii) } y=
$$

$\qquad$ or $y=$
(iii) $\frac{x+1}{3}-\frac{x-2}{5}=2$

$$
\text { Answer(a)(iii) } x=
$$

(b) (i) Factorise $u^{2}-9 u-10$.

Answer(b)(i)
(ii) Solve the equation $u^{2}-9 u-10=0$.

Answer(b)(ii) $u=$ $\qquad$ or $u=$
(c)


The area of the triangle is equal to the area of the square.
All lengths are in centimetres.
(i) Show that $x^{2}-3 x-2=0$.

Answer(c)(i)
(ii) Solve the equation $x^{2}-3 x-2=0$, giving your answers correct to 2 decimal places. Show all your working.
$\qquad$ or $x=$
(iii) Calculate the area of one of the shapes.
$\qquad$ $\mathrm{cm}^{2}$

8 (a) $y$ is 5 less than the square of the sum of $p$ and $q$.
Write down a formula for $y$ in terms of $p$ and $q$.

$$
\begin{equation*}
\text { Answer(a) } y= \tag{2}
\end{equation*}
$$

(b) The cost of a magazine is $\$ x$ and the cost of a newspaper is $\$(x-3)$.

The total cost of 6 magazines and 9 newspapers is $\$ 51$.
Write down and solve an equation in $x$ to find the cost of a magazine.
(c) Bus tickets cost $\$ 3$ for an adult and $\$ 2$ for a child.

There are $a$ adults and $c$ children on a bus.
The total number of people on the bus is 52 .
The total cost of the 52 tickets is $\$ 139$.
Find the number of adults and the number of children on the bus.

9 (a) The cost of a bottle of water is $\$ w$.
The cost of a bottle of juice is $\$ j$.
The total cost of 8 bottles of water and 2 bottles of juice is $\$ 12$.
The total cost of 12 bottles of water and 18 bottles of juice is $\$ 45$.
Find the cost of a bottle of water and the cost of a bottle of juice.

(b) Roshni cycles 2 kilometres at $y \mathrm{~km} / \mathrm{h}$ and then runs 4 kilometres at $(y-4) \mathrm{km} / \mathrm{h}$. The whole journey takes 40 minutes.
(i) Write an equation in $y$ and show that it simplifies to

$$
y^{2}-13 y+12=0 .
$$

Answer(b)(i)
(ii) Factorise $y^{2}-13 y+12$.

Answer(b)(ii)
(iii) Solve the equation $y^{2}-13 y+12=0$.

$$
\operatorname{Answer}(b)(\text { iii }) y=\ldots . . . . . . . . . \quad \text { or } y=
$$

(iv) Work out Roshni's running speed.

> Answer(b)(iv)
$\mathrm{km} / \mathrm{h}$
(c) Solve the equation

$$
u^{2}-u-4=0
$$

Show all your working and give your answers correct to 2 decimal places.

$$
\text { Answer(c) } u=
$$

13 (a) Find the value of $x$ when $\frac{18}{24}=\frac{27}{x}$.

$$
\operatorname{Answer}(a) x=
$$

(b) Show that $\frac{2}{3} \div 1 \frac{1}{6}=\frac{4}{7}$.

Write down all the steps in your working.

Answer(b)

14 (a) A drinking glass contains 55 cl of water.
Write 55 cl in litres.

Answer(a) .......................... litres [1]
(b) The mass of grain in a sack is 35 kg .

The grain is divided equally into 140 bags.
Calculate the mass of grain in each bag.
Give your answer in grams.

```
Answer(b)
g [2]
```

15 (a) Write 67.499 correct to the nearest integer.

Answer(a)
[1]
(b) Write 0.003040506 correct to 3 significant figures.

Answer(b)
(c) $d=56.4$, correct to 1 decimal place.

Write down the lower bound of $d$.

Answer (c)
[1]

10 The cost of a cup of tea is $t$ cents.
The cost of a cup of coffee is $(t+5)$ cents.
The total cost of 7 cups of tea and 11 cups of coffee is 2215 cents.
Find the cost of one cup of tea.

Answer
cents

11 The volume of a solid varies directly as the cube of its length.
When the length is 3 cm , the volume is $108 \mathrm{~cm}^{3}$.
Find the volume when the length is 5 cm .
$\mathrm{cm}^{3}$ [3]

16 Write $\frac{2}{x-2}+\frac{3}{x+2}$ as a single fraction.
Give your answer in its simplest form.

17


The diagrams show two mathematically similar containers.
The larger container has a base with diameter 9 cm and a height 20 cm .
The smaller container has a base with diameter $d \mathrm{~cm}$ and a height 10 cm .
(a) Find the value of $d$.

$$
\begin{equation*}
\text { Answer(a) } d= \tag{1}
\end{equation*}
$$

(b) The larger container has a capacity of 1600 ml .

Calculate the capacity of the smaller container.

3 (a)

$$
x=3 m-k
$$

Find the value of
(i) $x$ when $m=2$ and $k=-4$,
Answer(a)(i)
(ii) $m$ when $x=19$ and $k=5$.

Answer(a)(ii)
(b) Expand the brackets.

$$
g\left(7 f-g^{2}\right)
$$

Answer(b)
(c) Factorise completely.

$$
18 h^{2}-12 h j
$$

(d) Make $m$ the subject of the formula.

$$
t=8 m+15
$$

Answer(d) $m=$
(e) Solve the equation.

$$
p+3=3(p-5)
$$

7 (a) Solve the equations.
(i) $2 x+3=15-x$

$$
\begin{equation*}
\text { Answer(a)(i) } x= \tag{2}
\end{equation*}
$$

(ii) $\frac{2 y-1}{3}=7$
(iii) $2=\frac{1}{u-1}$
(b) Write down equations to show the following.
(i) $p$ is equal to $r$ plus two times $q$.

Answer(b)(i)
(ii) $k$ is equal to the square of the sum of $l$ and $m$.

> Answer(b)(ii)
(c) Pierre walks for 2 hours at $w \mathrm{~km} / \mathrm{h}$ and then for another 3 hours at $(w-1) \mathrm{km} / \mathrm{h}$.

The total distance of Pierre's journey is 11.5 km .
Find the value of $w$.

5 (a) Solve $9<3 n+6 \leqslant 21$ for integer values of $n$.

> Answer(a)
(b) Factorise completely.
(i) $2 x^{2}+10 x y$

Answer(b)(i)
(ii) $3 a^{2}-12 b^{2}$

> Answer(b)(ii)
(c)


The area of this triangle is $84 \mathrm{~cm}^{2}$.
(i) Show that $x^{2}+17 x-168=0$.

Answer (c)(i)
(ii) Factorise $x^{2}+17 x-168$.
(iii) Solve $x^{2}+17 x-168=0$.
(d) Solve

$$
\frac{15-x}{2}=3-2 x .
$$

(e) Solve $2 x^{2}-5 x-6=0$.

Show all your working and give your answers correct to 2 decimal places.

3


The diagram shows a square of side $(x+5) \mathrm{cm}$ and a rectangle which measures $2 x \mathrm{~cm}$ by $x \mathrm{~cm}$.
The area of the square is $1 \mathrm{~cm}^{2}$ more than the area of the rectangle.
(a) Show that $x^{2}-10 x-24=0$.

Answer(a)
(b) Find the value of $x$.

Answer(b) $x=$
(c) Calculate the acute angle between the diagonals of the rectangle.
(c) Erik runs a race at an average speed of $x \mathrm{~m} / \mathrm{s}$.

His time is $(3 x-9)$ seconds and the race distance is $\left(2 x^{2}-8\right)$ metres.
(i) Write down an equation in $x$ and show that it simplifies to

$$
\begin{equation*}
x^{2}-9 x+8=0 \tag{2}
\end{equation*}
$$

(ii) Solve $x^{2}-9 x+8=0$.
(iii) Write down Erik's time and the race distance.

17 Solve the equation

$$
x^{2}+4 x-22=0
$$

Give your answers correct to 2 decimal places.
Show all your working.

8 (a) (i) The cost of a book is $\$ x$.
Write down an expression in terms of $x$ for the number of these books which are bought for $\$ 40$.
(ii) The cost of each book is increased by $\$ 2$.

The number of books which are bought for $\$ 40$ is now one less than before.
Write down an equation in $x$ and show that it simplifies to $x^{2}+2 x-80=0$.
(iii) Solve the equation $x^{2}+2 x-80=0$.
(iv) Find the original cost of one book.
(iv) Find
(b) Magazines cost $\$ m$ each and newspapers cost $\$ n$ each.

One magazine costs $\$ 2.55$ more than one newspaper.
The cost of two magazines is the same as the cost of five newspapers.
(i) Write down two equations in $m$ and $n$ to show this information.
(ii) Find the values of $m$ and $n$.

1 Two quantities $c$ and $d$ are connected by the formula $c=2 d+30$.
Find $c$ when $d=-100$.

2
(a)

$$
\frac{2}{3}+\frac{5}{6}=\frac{x}{2} .
$$

Find the value of $x$.

Answer(a) $x=$
(b)

$$
\frac{5}{3} \div \frac{3}{y}=\frac{40}{9}
$$

Find the value of $y$.

$$
\text { Answer(b) } y=\text {. }
$$

3 Use your calculator to work out
(a) $\sqrt{ }\left(7+6 \times 243^{0.2}\right)$,
Answer(a)
(b) $2-\tan 30^{\circ} \times \tan 60^{\circ}$.
Answer(b)

4 Angharad sleeps for 8 hours each night, correct to the nearest 10 minutes. The total time she sleeps in the month of November ( 30 nights) is $T$ hours.
Between what limits does $T$ lie?

Answer
$\leqslant T<$

16

$A B C D$ is a trapezium.
(a) Find the area of the trapezium in terms of $x$ and simplify your answer.
$\qquad$ $\mathrm{cm}^{2}$
(b) Angle $B C D=y^{\circ}$. Calculate the value of $y$.

$$
\begin{equation*}
\text { Answer(b) } y= \tag{2}
\end{equation*}
$$

17 Solve the equations
(a) $0.2 x-3=0.5 x$,

$$
\text { Answer(a) } x=
$$

(b) $2 x^{2}-11 x+12=0$.
$\qquad$ or $x=$ $\qquad$

(a) (i) Write down an expression for the area of rectangle $R$.

## Answer(a) (i)

$\mathrm{cm}^{2}$
(ii) Show that the total area of rectangles $R$ and $Q$ is $5 x^{2}+30 x+24$ square centimetres.
(b) The total area of rectangles $R$ and $Q$ is $64 \mathrm{~cm}^{2}$. Calculate the value of $x$ correct to 1 decimal place.

(a) When the area of triangle $A B C$ is $48 \mathrm{~cm}^{2}$,
(i) show that $x^{2}+4 x-96=0$,
(ii) solve the equation $x^{2}+4 x-96=0$,
(iii) write down the length of $A B$.
(b) When $\tan y=\frac{1}{6}$, find the value of $x$.
(c) When the length of $A C$ is 9 cm ,
(i) show that $2 x^{2}+8 x-65=0$,
(ii) solve the equation $2 x^{2}+8 x-65=0$,
(Show your working and give your answers correct to 2 decimal places.)
(iii) calculate the perimeter of triangle $A B C$.


SCALE


The diagram shows two rectangles $A B C D$ and $P Q R S$.
$A B=(2 x+5) \mathrm{cm}, A D=(x+3) \mathrm{cm}, P Q=(x+4) \mathrm{cm}$ and $P S=x \mathrm{~cm}$.
(a) For one value of $x$, the area of rectangle $A B C D$ is $59 \mathrm{~cm}^{2}$ more than the area of rectangle $P Q R S$.
(i) Show that $x^{2}+7 x-44=0$.

Answer(a)(i)
(ii) Factorise $x^{2}+7 x-44$.

## Answer(a)(ii)

(iii) Solve the equation $x^{2}+7 x-44=0$.

$$
\operatorname{Answer}(a)(\text { iii) } x=
$$

$\qquad$ or $x=$ $\qquad$
(iv) Calculate the size of angle $D B A$.

$$
\begin{equation*}
\text { Answer(a)(iv) Angle } D B A= \tag{2}
\end{equation*}
$$

(b) For a different value of $x$, the rectangles $A B C D$ and $P Q R S$ are similar.
(i) Show that this value of $x$ satisfies the equation $x^{2}-2 x-12=0$. Answer(b)(i)
(ii) Solve the equation $x^{2}-2 x-12=0$, giving your answers correct to 2 decimal places.

$$
\text { Answer(b)(ii) } x=
$$

or $x=$ $\qquad$
(iii) Calculate the perimeter of the rectangle $P Q R S$.
$\qquad$

9 (a) Solve the equation $\frac{m-3}{4}+\frac{m+4}{3}=-7$.

$$
\text { Answer(a) } m=
$$

(b) (i) $y=\frac{3}{x-1}-\frac{2}{x+3}$

Find the value of $y$ when $x=5$.

Answer(b)(i)
(ii) Write $\frac{3}{x-1}-\frac{2}{x+3}$ as a single fraction.
(iii) Solve the equation $\frac{3}{x-1}-\frac{2}{x+3}=\frac{1}{x}$.
(c) $\quad p=\frac{t}{q-1}$

Find $q$ in terms of $p$ and $t$.

12 The side of a square is 6.3 cm , correct to the nearest millimetre.
The lower bound of the perimeter of the square is $u \mathrm{~cm}$ and the upper bound of the perimeter is $v \mathrm{~cm}$. Calculate the value of
(a) $u$,

$$
\begin{equation*}
\operatorname{Answer}(a) u= \tag{1}
\end{equation*}
$$

(b) $v-u$.

$$
\text { Answer(b) } v-u=
$$

$13 a \times 10^{7}+b \times 10^{6}=c \times 10^{6}$
Find $c$ in terms of $a$ and $b$.
Give your answer in its simplest form.
Answer c =

14 Priyantha completes a 10 km run in 55 minutes 20 seconds. Calculate Priyantha's average speed in $\mathrm{km} / \mathrm{h}$.

24 (a) Write $\frac{1}{y}-\frac{2}{x}$ as a single fraction in its lowest terms.

> Answer(a)
[2]
(b) Write $\frac{x^{2}+x}{3 x+3}$ in its lowest terms.

## Answer(b)

25 f: $x \rightarrow 2 x-7 \quad \mathrm{~g}: x \rightarrow \frac{1}{x}$
Find
(a) $\mathrm{fg}\left(\frac{1}{2}\right)$,
(b) $\mathrm{gf}(x)$,

$$
\begin{equation*}
\operatorname{Answer}(b) \operatorname{gf}(x)= \tag{1}
\end{equation*}
$$

(c) $\mathrm{f}^{-1}(x)$.

$$
\begin{equation*}
\operatorname{Answer}(c) \mathrm{f}^{-1}(x)= \tag{2}
\end{equation*}
$$



A farmer makes a rectangular enclosure for his animals.
He uses a wall for one side and a total of 72 metres of fencing for the other three sides.
The enclosure has width $x$ metres and area $A$ square metres.
(a) Show that $A=72 x-2 x^{2}$.

Answer (a)
(b) Factorise completely $72 x-2 x^{2}$.

Answer(b)
(c) Complete the table for $A=72 x-2 x^{2}$.

| $x$ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A$ | 0 | 310 | 520 |  |  | 550 | 360 |  |

(d) Draw the graph of $A=72 x-2 x^{2}$ for $0 \leqslant x \leqslant 35$ on the grid opposite.

5 (a)


In the right-angled triangle $A B C, A B=x \mathrm{~cm}, B C=(x+7) \mathrm{cm}$ and $A C=17 \mathrm{~cm}$.
(i) Show that $x^{2}+7 x-120=0$.

Answer(a)(i)
(ii) Factorise $x^{2}+7 x-120$.
Answer(a)(ii)
(iii) Write down the solutions of $x^{2}+7 x-120=0$.

$$
\begin{equation*}
\operatorname{Answer(a)(iii)} x=\ldots . . . . . . . . . . . . . . . \quad \text { or } x= \tag{1}
\end{equation*}
$$

(iv) Write down the length of $B C$.
(b)


The rectangle and the square shown in the diagram above have the same area.
(i) Show that $2 x^{2}-15 x-9=0$.

Answer(b)(i)
(ii) Solve the equation $2 x^{2}-15 x-9=0$.

Show all your working and give your answers correct to 2 decimal places.

Answer(b)(ii) $x=$
................. or $x=$
(iii) Calculate the perimeter of the square.
(d) Solve the equation.

$$
2 x^{2}+5 x+1=0
$$

Show all your working and give your answers correct to 2 decimal places.

15 (a) Factorise $t^{2}-4$.

Answer (a)
(b) Factorise completely $a t^{2}-4 a+2 t^{2}-8$.

Answer (b)

16


A set of Russian dolls is made so that the volume, $V$, of each of them varies directly as the cube of its height, $h$.
The doll with a height of 3 cm has a volume of $6.75 \mathrm{~cm}^{3}$.
(a) Find an equation for $V$ in terms of $h$.

Answer (a) $V=$
(b) Find the volume of a doll with a height of 2.5 cm .

# EXTENDED MATHEMATICS 2002-2011 CLASSIFIEDS ALGEBRA 

Compiled \& Edited By

Dr. Eltayeb Abdul Rhman

www.drtayeb.wordpress.com

First Edition 2011

